# RTDM Consultant Task 5 DTA Subarea Model Development

#### **RRTPO TECHNICAL ADVISORY COMMITTEE MEETING**

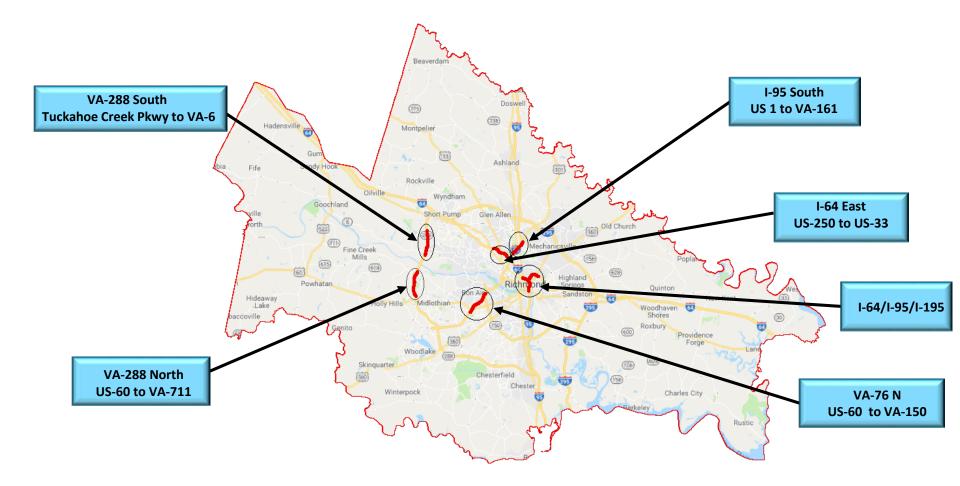
August 13, 2019

Presentation by:

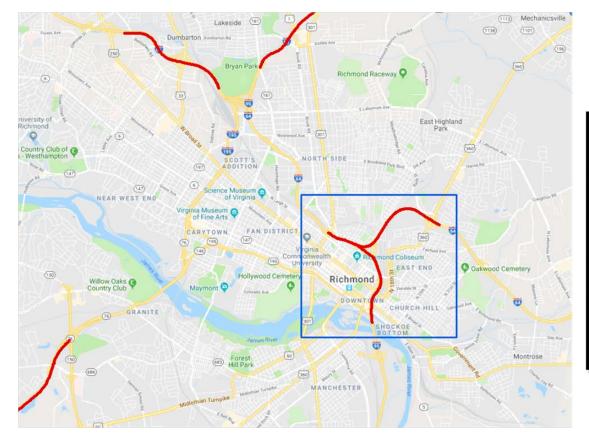
Sulabh Aryal, AICP Transportation Planning Manager






## **Objectives of the Study**

- To develop a mesoscopic DTA application for scenario testing
- Explore the use of Big Data like Streetlight OD data/ HERE Data in the corridor-level model development
- To have a deeper look of one of the major chokepoints in the region
- Test applications such as freeway bottleneck analysis

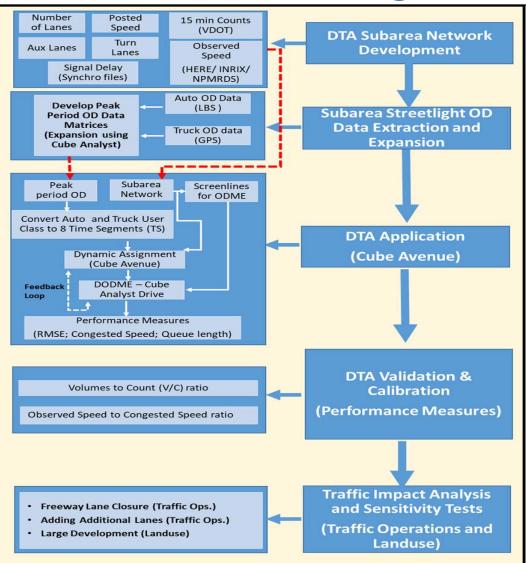

#### **Dynamic Traffic Assignment (DTA) Principles**

- Method of system-level assignment analysis which seeks to track the progress of a trip through the network over time
- Accounts for formation and propagation of queues due to congestion.
- A bridge between traditional regional-level static assignment models and corridor-level models (micro-simulation)
- Within a model period, shorter time segments are assumed in DTA.

### **Major Chokepoints in the Richmond Region**



### **DTA Study Area**






### **Tools Selection and Development**

- Streetlight OD data and Expansion
  - LBS and GPS Navigation OD data within the subarea
  - Provides traffic flows (corridor subarea OD) using "Passthrough" zones
  - Expand using ODME (IPF) process, with a feedback loop within highway assignment
- Develop DTA Subarea Application
  - Peak period specific routine
  - AM (7 AM 9 AM)
  - PM (5 PM 7 PM)
  - Time slice OD expanded data to 15 minute interval
  - Validated the model using counts and observed speed at 15 minutes interval

#### **Overall Subarea Modelling Process**



### **Model Calibration**

- Congested Speed Calibration
- Vehicle flows Vs Counts
- Visual checks, Animation, Queues

| Volume<br>Group | Count Range    | Allow<br>RMSE    | No of<br>Links | After<br>RMSE |  |  |
|-----------------|----------------|------------------|----------------|---------------|--|--|
| 1               | 1- 5,000       | 45 - 55%         | 93             | 29.70%        |  |  |
| 2               | 5,000- 10,000  | 35 - 45%         | 16             | 17.20%        |  |  |
| 3               | 10,000- 20,000 | 27 - 35%         | 5              | 14.30%        |  |  |
| 13              | 1-500,000      | <b>32 - 39</b> % | 114            | 25.30%        |  |  |

|      | I-95 NB Observed Speeds |         |         |       |         | I-95 NB DTA Estimated Speeds |       |         |          |       |         |         |
|------|-------------------------|---------|---------|-------|---------|------------------------------|-------|---------|----------|-------|---------|---------|
|      | I-95                    | 1-95    | 1-95    | I-95  |         |                              | 1-95  | 1-95    | 1-95     | 1-95  |         |         |
|      | South                   | South   | North   | North | I-64 WB | 1-64                         | South | South   | North of | North | I-64 WB |         |
|      | End                     | of I-64 | of I-64 | End   | Ramp    | WB                           | End   | of I-64 | I-64     | End   | Ramp    | I-64 WB |
| DIR  | NBO1                    | NBO2    | NBO3    | NBO4  | WBO5    | WBO6                         | NBE1  | NBE2    | NBE3     | NBE4  | WBE5    | WBE6    |
| 7:00 | 56                      | 56      | 56      | 58    | 51      | 51                           | 44    | 44      | 45       | 50    | 42      | 53      |
| 7:15 | 53                      | 54      | 53      | 54    | 42      | 42                           | 38    | 16      | 38       | 38    | 35      | 48      |
| 7:30 | 49                      | 48      | 44      | 47    | 27      | 27                           | 35    | 8       | 10       | 38    | 34      | 49      |
| 7:45 | 41                      | 37      | 30      | 36    | 20      | 20                           | 40    | 6       | 5        | 38    | 30      | 38      |
| 8:00 | 40                      | 36      | 30      | 36    | 19      | 19                           | 4     | 5       | 5        | 38    | 28      | 25      |
| 8:15 | 39                      | 35      | 30      | 37    | 24      | 24                           | 2     | 4       | 23       | 38    | 29      | 23      |
| 8:30 | 41                      | 38      | 32      | 36    | 28      | 28                           | 1     | 4       | 50       | 38    | 30      | 17      |
| 8:45 | 45                      | 42      | 36      | 39    | 35      | 35                           | 1     | 4       | 54       | 54    | 27      | 16      |

### **Scenarios Testing**

- 1. No-Build/Existing Conditions
- 2. Scenario 1: 1 Additional Lane on I-95 NB/SB
- Scenario 2: 1+1 Additional Lane on I-95/I-64 Ramps
- 4. Scenario 3: Stress Test- Closure of I-95 SB, South of I-64 Interchange

### Scenario 1 (1 Additional Lane on I-95)

#### **AM Period Subarea Systemwide Impacts**



#### Scenario 2 (1+1 Additional Lane on I-95/I-64 Ramps)

#### AM Results- System wide: No-Build Vs. Scenario 2



RICHMOND REGIONAL TRANSPORTATION PLANNING ORGANIZATION

#### Scenario 2 (1+1 Additional Lane on I-95/I-64 Ramps)

#### AM Results- I-95/I-64 Interchange: No-Build Vs. Scenario 2



RICHMOND REGIONAL TRANSPORTATION PLANNING ORGANIZATION

#### Scenario 3: Closure of I-95 SB, South of I-64 Interchange

#### AM Results- System wide: No-Build Vs. Scenario 3



RICHMOND REGIONAL TRANSPORTATION PLANNING ORGANIZATION

## Conclusion

- Streetlight data was effectively used in developing the subarea demand, with careful OD expansion methods.
- DTA calibration replicates the bottleneck conditions at the I-95/I-64 interchange
  - Merges of major roadways and movements
  - Short ramp segments
  - Heavy AM/PM loads
- The DTA Model provides RRTPO with capabilities to analyze bottlenecks.
- This approach minimized the needs for expensive data collection
  - Use of already available traffic count data, OD and speed data from Big data sources- Streetlight/HERE
- Mesoscopic DTA model requires extensive calibration and sensitivity analysis
  - Delicate compromise between volume/count and congested speed calibration
  - Observed data should be carefully chosen for the calibration

# Questions?

Sulabh Aryal, Transportation Planning Manager saryal@PlanRVA.org





9211 Forest Hill Ave., Suite 200 Richmond, VA 23235 Phone: (804) 323-2033

www.PlanRVA.org